Performance experiments on
BOUT++

Praveen Narayanan and Alice Koniges

Office of

17 e) U.S. DEPARTMENT OF
) ENERGY Science

National Energy Research
Scientific Computing Center

Why Analyze Performance?

Improving performance on HPC systems has compelling economic and
scientific rationales.

— Dave Bailey: Value of improving performance of a single application, 5% of
machine’s cycles by 20% over 10 years: $1,500,000

— Scientific benefit probably much higher

Goal: solve problems faster; solve larger problems

Accurately state computational need

Only that which can be measured can be improved

The challenge is mapping the application to an increasingly more complex
system architecture

— or set of architectures ~

A
reeooeee|

E

Performance Analysis Issues

Difficult process for real codes
Many ways of measuring, reporting

Very broad space: Not just time on one size

— for fixed size problem (same memory per processor): Strong
Scaling

— scaled up problem (fixed execution time):
Weak Scaling

A variety of pitfalls abound

— Must compare parallel performance to best uniprocessor
algorithm, not just parallel program on 1 processor (unless it’s

best)
— Be careful relying on any single number

Amdahl’s Law

Performance Questions

How can we tell if a program is performing well?
Orisn’t?

If performance is not “good”, how can we
pinpoint why?

How can we identify the causes?

What can we do about it?

NERSC The multicore

10,000,000
! ' ! .c’
Moore’s law still extant L s
Traditional sources of —
performance improvement
ending '
— Old trend: double clock
frequency every 18 1,000
months
— New trend double #cores =~ ™ N
every 18 months
10
— Implications: flops /
cheap, communication, , A P
network bandwidth R e T
. . ! ® PerfiClock (ILP)
expensive in future . | T

1970 1975 1980 1985 1990 1995 2000 2005 2010

J
BERKELEY LA

Processor-DRAM Gap (latency)

 Memory hierarchies are getting deeper
— Processors get faster more quickly than memory

TOOQ -+ e g‘ uProc
o)

“Moore’s Law” 60%/yr
)
8 1 OO ... Processor_Memory
g Performance Gap:
E 101 T (grows 50% / year)
Y . .~ DRAM
~ DRAM 7%/yr

: Slide from Katherine Yellick’s ppt
TI me CS_267 rrr:rrr m

Performance analysis tools

Use of profilers to measure performance
Approach

* Build and instrument code with binary to monitor function groups of interest
— MPI, OpenMP, PGAS, HWC, IO

* Run instrumented binary
* Identify performance bottlenecks
* Suggest (and possibly implement) improvements to optimize code
Tools used
— IPM: Low overhead, communication, flops, code regions
— CrayPAT: Communication, flops, code regions, PGAS, variety of tracing
options
Overhead depends on number of trace groups monitored

Level of detail in study depends on specifics: time available,
difficulties presented by code

>

A
reeooeee|

BERKELEY LAB

Performance checklist

Scaling

— Application time, speed (flop/s)

— Double concurrency, does speed double?
Communication (vs computation)

Load imbalance

— Check cabinet for mammoths and mosquitoes
Size and composition of communication

— Bandwidth bound?
— Latency bound?
— Collectives (large concurrency)

Memory bandwidth sensitivity

Tflops

BOUT++ strong scallng (hopper nersc gov)

10 ; ; ‘
== ldeal §
0—0 Exper|ment ‘ ‘ §
‘ ‘ : ‘ .
1OL b R I,’ SR |
good
100 F et i
. A S S N SRR N
1024 2048 4096 8192 16384 32768 65536
Number of cores
BOUT++ strong scaling (hopper.nersc.gov)

Time (s)

10° —

e—eo \Valltime
— Commtime

i i i i i 1]
1024 2048 4096 8192 16384 32768 65536
Number of cores

BOUT++ scaling results (EIm-pb)

BOUT++ performance on hopper nersc gov X
T T T 5

,,,,,,,,,,,,,,,,,, -- Performance (|dea|)

: e—e Performa r|ment);20
"""" | == %Commnication :

o
0

e
~
T

o
()]
T

©
U1
T

Gflops/core
o
S
T

0.3+
0.2 b IS T less good
good &¢
T IR IRIE SITIITITINPIP SRR, . Wt SRS
00 ; ; ; ; ; 0
1024 2048 4096 8192 163843276865536
Number of cores
Grid used:
nx=2052 ny=512
Does not scale Set: nxpe=256
But ...
{Communication

Does not increase

. . A
Runtime increases because of other reasonifbl\""

Performance decreases because of other reasoms

Communication not reason for
performance degradation

* Separate out communication

BOUT++ performance on hopper.nersc.gov

portion from walltime and 7 ——— \
Compute . i S A T NN - S

Soaf good N\ N\
speed=Flop/(computation time-core) § | N\ (\Yood

* Should be constant forideal o[22 . |\ A\

e—e Gflop/comp-time

Scaling’ if Comm We re reason 0.05 1624 2648 4696 8£92 165’38432176865536
for performance degradation

W MPI pie shows signifi
NERSC Allreduce call-

MPI_Allreduce calls form bulk of
pie

MPI average message size 5 kB,
74,000 calls

Not quite entirely latency
bound on hopper (5 kB should
be large enough)

Might become bottleneck after
other issues are sorted out

(communication not yet a 65,536
bottleneck)

B MPI_Wait
B MPI_AIIReduce

Nersc [
kernel to

* Breakup by time spent: Calc scales somewhat,
but inv, solver do not scale

S

Bout++ (elm) scaling summary

* Up to concurrency 8,192, code scales nearly
perfectly.

* Two issues beyond 8,192
— Performance decreases (flop/time decreases)
— Wall time increases

— MPI not the reason for performance degradation
— Computational performance decreases

Grid points/p#®
Decreases with

concurrency

%, U.S. DEPARTMENT OF

EN ERGY Science

(]
=

ny per core

Issues with increasi
count

BOUT++ strong scaling (hopper.nersc.gov)

10

- - Ideal
e—e Experiment

1 i i i 1 i i
1024 2048 4096 8192 16384 32768 65536
Number of cores

128

64+

32F

16

8,

4,

2+

BOUT++ strong scaling (hopper.nersc.gov)

: : : : : :

Number of cores

Increaseasing concurrency

Office of

14

* Steady increase in flop
count

(number of operations)

Conjecture: Extra
computations in ghost
cells (and more cycles
spent in doing these)

Valid region (excluding

ghost region) does same
amount of work

Lawrence Berkeley
ARG National Laboratory

BOUT++: Expt-LAPD-drift

Experiment: turbulence in an annulus (LAPD)

Investigate source of extra computations in code
[more work done — leads to greater flop’s (not
‘flop/s’) count]

Code annotated to give flop count with CrayPAT

A given portion is annotated and flop count in
that code section is compared across concurrency

Conjecture: increase in flops in this section
because of ghost cell computations (arrays
consist of valid+ghost regions)

PAT region begin (24,
"phys run-14");

nu = nu_hat * Nit /
(Tet”*1.5) ;
mu 1i = mui hat *

(T1t”*2.5) /Nit;
kapa Te = 3.2*(1./fmei) *
(wei/nueix) * (Tet”2.5) ;

kapa Ti = 3.9%* (wci/
nuiix)* (Tit*2.5);

// Calculate pressure
pei = (Tet+Tit)*Nit;
pe = Tet*Nit;

PAT region end(24) ;

Annotated code region

* Quantities Tet, Tit, Nit, etc declared as
follows

// 3D evolving fields
Field3D rho, ni, ajpar, te;

// Derived 3D variables
Field3D phi, Apar, Ve, jpar;

// Non-linear coefficients
Field3D nu, mu_i, kapa Te, kapa Ti;

// 3D total values
Field3D Nit, Tit, Tet, Vit, phit, VEt, ajp0;

// pressures
Field3D pei, pe;
Field2D peiO, peO;

v
Variables definedto Extra
comprise valid region Computation
+ghost cells in boxcan be

me ﬁ

BERKELEY LAB

Y- [Je8 Computation in gu

e Grid: 204x128, ghost cells: MXG, MYG=2

6400 (extreme-2 inner grid pts)

Extreme case 3 times the work
as expected!

w/2

w/2

3200 (extreme but one)

Twice as much work as
expected

Observations: v
ghost cell co

Concurrency FPO in given region Factor predicted
from CrayPat

6400 51512160000 L(reference case)

3200 34341360000 2/3 2/3
1600 25755960000 /> %

800 51463260000 1-25/3 1.25/3

Predicted values match exactly with computed flops, in terms of ratios
Hypothesis seems to be correct

>

.S. DEPARTMENT OF Office of rm lﬁ
\ 4 N ERGY Science Lawrence Berkeley

18 (303 AV.:l National Laboratory

Kernels: Calc scales,
ghost cells

NERSC

* Breakup by time spent

Concurrency wall Comm Solver
4096 364 = 12 Does not scale
8192 201 11
16384 124 18 16
16384 197 \J 13
P 8 2 8 8 8
16384 (1%t expt) 16384 (2" expt)

BOUT++ results: improve INV,
PVODE

* Summary
— Scaling degrades beyond 8192 procs
— Scaling efficiency is very poor at 32768 procs

— lIssues

* Extra computations in ghost cells
» Putin place to reduce communication
» Need to check if extra computations performed are worth it
» Performance degrades because
* Laplacian inversion does not scale
* Pvode solver does not scale
* MPI collectives

* Surface to volume ratio tested may not be best but issues remain

— MPI: Collectives grow with concurrency, but Laplacian inversion and PVODE
solver seem to be culpable in equal measure

* Recommendations: need to check if replacing ghost cell computation with
communication improves runtime (or not)

* Need to improve Laplacian inversion and PVODE kernels

~
A
frreeer ‘III‘

Investigation of collectives in time-
stepping algorithms (PETSc)

* Time-stepping algorithms suspected to have
collectives

— First step: check growth of collectives in time-
steppers

— Hook with PETSc and turn on profiling layer

— -log_summary

— Examine %collectives vis a vis runtime

PETSC

OT{rgie in Collectives in Implicit Timestepping with Newton-Krylov

0.14f

o O VecDot + VecMDot + VecNoi'm

o
0.12f e s o«
I B SRR o S
0.10F T S
0.00F < P
oo A

oot A TSN PSS— S—

0081

Proportion of Time in Vec Dot,MDot,Norm ops

i i i
1024 2048 4096 8192
Number of cores

>

U.S. DEPARTMENT OF 1 - A
ENERGY sconce =
Science Lawrence Berkeley

22 1 V(GAS@N G National Laboratory

Overall conclusions and future
directions(?)

BOUT++ scales remarkably well for a strong scaling test
— Performance degradation ‘not just’ because of increase in surface to volume
ratio
Communication increases at higher concurrency, could constitute the
ultimate scaling bottleneck

Extra ghost cell computations

— Putin there for a reason, to lessen communication, but manifests as extra time
spent in computation

— Might be good overhead when flops become cheaper
Bandwidth sensitivity not an issue in BOUT++
Two dimensional domain decomposition
— Possibly add OpenMP in third direction?
Collectives might play dominant role in time-steppers
— Find ways of minimizing this
— What is the effect of putting in preconditioners?

>

A
reeooeee|

BERKELEY LAB

